16 research outputs found

    Location of Zeros in the Complex Temperature Plane: Absence of Lee-Yang Theorem, J

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Surface Instability in Windblown Sand

    Full text link
    We investigate the formation of ripples on the surface of windblown sand based on the one-dimensional model of Nishimori and Ouchi [Phys. Rev. Lett. 71, 197 (1993)], which contains the processes of saltation and grain relaxation. We carry out a nonlinear analysis to determine the propagation speed of the restabilized ripple patterns, and the amplitudes and phases of their first, second, and third harmonics. The agreement between the theory and our numerical simulations is excellent near the onset of instability. We also determine the Eckhaus boundary, outside which the steady ripple patterns are unstable.Comment: 23 pages, 8 figure

    Fat Fisher Zeroes

    Full text link
    We show that it is possible to determine the locus of Fisher zeroes in the thermodynamic limit for the Ising model on planar (``fat'') phi4 random graphs and their dual quadrangulations by matching up the real part of the high and low temperature branches of the expression for the free energy. The form of this expression for the free energy also means that series expansion results for the zeroes may be obtained with rather less effort than might appear necessary at first sight by simply reverting the series expansion of a function g(z) which appears in the solution and taking a logarithm. Unlike regular 2D lattices where numerous unphysical critical points exist with non-standard exponents, the Ising model on planar phi4 graphs displays only the physical transition at c = exp (- 2 beta) = 1/4 and a mirror transition at c=-1/4 both with KPZ/DDK exponents (alpha = -1, beta = 1/2, gamma = 2). The relation between the phi4 locus and that of the dual quadrangulations is akin to that between the (regular) triangular and honeycomb lattices since there is no self-duality.Comment: 12 pages + 6 eps figure

    Bifurcations of a driven granular system under gravity

    Full text link
    Molecular dynamics study on the granular bifurcation in a simple model is presented. The model consists of hard disks, which undergo inelastic collisions; the system is under the uniform external gravity and is driven by the heat bath. The competition between the two effects, namely, the gravitational force and the heat bath, is carefully studied. We found that the system shows three phases, namely, the condensed phase, locally fluidized phase, and granular turbulent phase, upon increasing the external control parameter. We conclude that the transition from the condensed phase to the locally fluidized phase is distinguished by the existence of fluidized holes, and the transition from the locally fluidized phase to the granular turbulent phase is understood by the destabilization transition of the fluidized holes due to mutual interference.Comment: 35 pages, 17 figures, to be published in PR

    Spanning forests and the q-state Potts model in the limit q \to 0

    Get PDF
    We study the q-state Potts model with nearest-neighbor coupling v=e^{\beta J}-1 in the limit q,v \to 0 with the ratio w = v/q held fixed. Combinatorially, this limit gives rise to the generating polynomial of spanning forests; physically, it provides information about the Potts-model phase diagram in the neighborhood of (q,v) = (0,0). We have studied this model on the square and triangular lattices, using a transfer-matrix approach at both real and complex values of w. For both lattices, we have computed the symbolic transfer matrices for cylindrical strips of widths 2 \le L \le 10, as well as the limiting curves of partition-function zeros in the complex w-plane. For real w, we find two distinct phases separated by a transition point w=w_0, where w_0 = -1/4 (resp. w_0 = -0.1753 \pm 0.0002) for the square (resp. triangular) lattice. For w > w_0 we find a non-critical disordered phase, while for w < w_0 our results are compatible with a massless Berker-Kadanoff phase with conformal charge c = -2 and leading thermal scaling dimension x_{T,1} = 2 (marginal operator). At w = w_0 we find a "first-order critical point": the first derivative of the free energy is discontinuous at w_0, while the correlation length diverges as w \downarrow w_0 (and is infinite at w = w_0). The critical behavior at w = w_0 seems to be the same for both lattices and it differs from that of the Berker-Kadanoff phase: our results suggest that the conformal charge is c = -1, the leading thermal scaling dimension is x_{T,1} = 0, and the critical exponents are \nu = 1/d = 1/2 and \alpha = 1.Comment: 131 pages (LaTeX2e). Includes tex file, three sty files, and 65 Postscript figures. Also included are Mathematica files forests_sq_2-9P.m and forests_tri_2-9P.m. Final journal versio

    Location of Zeros in the Complex Temperature Plane: Absence of Lee-Yang Theorem, J

    No full text

    De toekomst van het arbeidsovereenkomstenrecht

    Get PDF
    diminishing the discrimination between white collars and blue collars. Temporary gap in the legislation. Responsability of the state

    Front Propagation in Self-Sustained and Laser Driven Explosive Crystal Growth: Stability Analysis and Morphological Aspects

    No full text
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe
    corecore